
UNIT- II:

Interaction Design Process: Iterative Design, User-centred Design, Interaction

Design Models, Overview of Interaction Design Models

Discovery: Discovery Phase Framework, Collection, Interpretation,

Documentation

Design: Conceptual Design, Physical Design, Evaluation, Interface Design

Standards, Designing the Facets of the Interface.

Interaction Design Process:

Iterative Design:

A system has been designed and built, and only when it proves unusable do they think to

ask how to do it right! In other companies usability is seen as equivalent to testing –

checking whether people can use it and fixing problems, rather than making sure they can

from the beginning. In the best companies, however, usability is designed in from the start

Requirements – what is wanted The first stage is establishing what exactly is needed. As a

precursor to this it is usually necessary to find out what is currently happening.

Analysis: The results of observation and interview need to be ordered in some way to bring

out key issues and communicate with later stages of design.

Design: Well, this is all about design, but there is a central stage when you move from what

you want, to how to do it. There are numerous rules, guidelines and design principles that

can be used to help.

Iteration and prototyping: Humans are complex and we cannot expect to get designs right

first time. We therefore need to evaluate a design to see how well it is working and where

there can be improvements.

Implementation and deployment :Finally, when we are happy with our design, we need to

create it and deploy it. This will involve writing code, perhaps making hardware, writing

documentation and manuals – everything that goes into a real system that can be given to

others.

User-centred Design:

User-centered design (UCD) is an iterative design process in which designers

focus on the users and their needs in each phase of the design process. In UCD,

design teams involve users throughout the design process via a variety of

research and design techniques, to create highly usable and accessible

products for them.

Generally, each iteration of the UCD approach involves four distinct phases.

First, as designers working in teams, we try to understand the context in which

users may use a system. Then, we identify and specify the users’ requirements.

A design phase follows, in which the design team develops solutions. The team

then proceeds to an evaluation phase. Here, you assess the outcomes of the

evaluation against the users’ context and requirements, to check how well a

design is performing. More specifically, you see how close it is to a level that

matches the users’ specific context and satisfies all of their relevant needs.

From here, your team makes further iterations of these four phases, and you

continue until the evaluation results are satisfactory..

User-centered design is an iterative process that focuses on an understanding

of the users and their context in all stages of design and development.

Interaction Design Models:

Waterfall Model:

Requirements specification: Requirements specification begins at the start of product

development. Though the requirements are from the customer’s perspective, if they are to

be met by the software product they must be formulated in a language suitable for

implementation. Requirements are usually initially expressed in the native language of the

customer. The executable languages for software are less natural and are more closely

related to a mathematical language in which each term in the language has a precise

interpretation, or semantics. The transformation from the expressive but relatively

ambiguous natural language of requirements to the more precise but less expressive

executable languages is one key to successful development. Task analysis techniques, which

are used to express work domain requirements in a form that is both expressive and

precise.

Architectural design: The requirements specification concentrates on what the system is

supposed to do. The next activities concentrate on how the system provides the services

expected from it. The first activity is a high-level decomposition of the system into

components that can either be brought in from existing software products or be developed

from scratch independently. An architectural design performs this decomposition. It is not

only concerned with the functional decomposition of the system, determining which

components provide which services. It must also describe the interdependencies between

separate components and the sharing of resources that will arise between components.

Detailed design: The architectural design provides a decomposition of the system

description that allows for isolated development of separate components which will later be

integrated. For those components that are not already available for immediate integration,

the designer must provide a sufficiently detailed description so that they may be

implemented in some programming language. The detailed design is a refinement of the

component description provided by the architectural design. The behavior implied by the

higher-level description must be preserved in the more detailed description. There will be

more than one possible refinement of the architectural component that will satisfy the

behavioral constraints. Choosing the best refinement is often a matter of trying to satisfy as

many of the non-functional requirements of the system as possible. Thus the language used

for the detailed design must allow some analysis of the design in order to assess its

properties

Coding and unit testing: The detailed design for a component of the system should be in

such a form that it is possible to implement it in some executable programming language.

After coding, the component can be tested to verify that it performs correctly, according to

some test criteria that were determined in earlier activities. Research on this activity within

the life cycle has concentrated on two areas. There is plenty of research that is geared

towards the automation of this coding activity directly from a low-level detailed design.

Most of the work in formal methods operates under the hypothesis that, in theory, the

transformation from the detailed design to the implementation is from one mathematical

representation to another and so should be able to be entirely automated. Other, more

practical work concentrates on the automatic generation of tests from output of earlier

activities which can be performed on a piece of code to verify that it behaves correctly

Integration and testing: Once enough components have been implemented and individually

tested, they must be integrated as described in the architectural design. Further testing is

done to ensure correct behavior and acceptable use of any shared resources. It is also

possible at this time to perform some acceptance testing with the customers to ensure that

the system meets their requirements. It is only after acceptance of the integrated system

that the product is finally released to the customer.

Waterfall Model

THE SPIRAL MODEL:

The Spiral model is proposed by “Boehm”. This model was developed to encompass the best

features of waterfall model and prototyping. It is a risk-driven process model with the risk

analysis feature.

Features:

1) Cyclic Approach for increasing system’s degree of definition and implementation while

decreasing degree of risk-Risk is considered as each revolution is made.

 2) Anchor Point Milestone for ensuring stakeholders commitment to feasible and mutually

satisfactory systems solution. (Milestone is a combination of work products and conditions).

Spiral model may be viewed as a Meta model, as it can accommodate any process

development model. Software is developed as a series of evolutionary releases. Project

manager adjusts planned number of iterations to complete the software. During early

iterations prototype is generated and during later iterations complete version is developed.

Advantages:

(Software evolves as the process progresses).

evolution of product.

become problematic.

 paradigms, spiral model is not a panacea (Medicine).It demands considerable

risk assessment expertise for success. If a major risk is not covered and managed, problems

will occur.

Prototype-Based Models:

Prototyping model is used when customer defines a set of objectives, but does not identify

detailed input, processing output requirements, developer is unsure of efficiency of

algorithm, adaptability of operating system etc, where phased model is inappropriate.

Prototyping model can be used as a standalone process model. Prototyping paradigm assists

the software engineer and customer to better understand what is to be built when

requirements are fuzzy. Prototype helps to identify software requirements. Prototyping

paradigm begins with communication, then quickly planning the prototyping iteration,

modelling quick design, construction of prototype, and the prototype is deployed and then

evaluated by the customer/user. Feedback is used to refine requirements for the software.

Prototype can serve as “the first system”, where users get a feel of actual system and

developers get to build something immediately.

Prototyping can be problematic for following reasons:

applied to satisfy customer).

working quickly. The key is to define the rules of the game at the beginning;

i.e., customer and developer must both agree that prototype is built to serve

as a mechanism for defining requirements.

Dynamic Systems Development Method:

This approach “provides a framework for building and maintaining systems which meet tight

time constraints through the use of incremental prototyping in a controlled project

environment”. Ex: 80% of an application can be delivered in 20% of time it takes to deliver

complete application. Like XP, ASD, DSDM also suggests an iterative software process.

DSDM approach to each iteration follows 80% rule, where much of the detail can be

completed when more business requirement/changes are known. DSDM Consortium is

worldwide group of member companies, which uses DSDM approach. DSDM lifecycle

defines 3 different iterative cycles, preceded by 2 additional life cycle activities.

1. Feasibility Study: Establishes business requirements and application constraints and then

assesses whether the application is viable candidate for DSDM process.

2. Business Study: Establishes functional information requirements that allow the

application to provide business value. Defines basic application architecture and identifies

maintainability requirements for the application.

3. Functional Model Iteration: Produces a set of incremental prototypes that demonstrate

functionality for the customer. It helps in gathering additional requirements from user

feedback who exercises the prototype.

4. Design and Build Iteration: Revisits prototypes built during functional model iteration to

ensure that they provide business value for end-users. Often occurs concurrently with

Functional Model Iteration.

5. Implementation: Places latest software increment into operational environment. It should

be noted that a) Increment may not be 100% complete. b) Changes may be requested as

increment is put in place. In both cases, DSDM development work continues by returning to

Functional Model Iteration activity.

process model.

Discovery:

Requirements Discovery phase:

Requirements discovery phase includes different techniques to be used by HCI designers to

identify interaction requirements from the users of the HCI. As part of this requirements

discovery, it is important to learn more about the user in the environment in which he or

she would be using the interface. In order to learn about the user, it is important to identify

the data collection methods that will be used to gather data that would reveal user‘s

behaviours and preferences.

This data collected needs to be organized and transformed into requirements that can be

used for the HCI design. This takes different techniques such as task analysis, use cases,

primary stakeholder profile and storyboarding which will be covered in this lecture. The

result of this phase is a requirements definition document that balances the needs of the

user, the business, and the technical necessities.

Methods of Collection:

Data gathering is an important part of the requirements discovery process in interaction

design. Data collection includes observation and elicitation methods. Observation methods

allow the designer to immerse themselves in users‘ environment in their day-to-day activity

by watching them but users don‘t participate directly with the HCI designer. On the other

hand, elicitation methods require user‘s participation and include direct and indirect

methods such as interviews, focus groups, and questionnaires.

Direct Observation :

This occurs when a field visit is conducted during the interaction design. Observation is a

requirements discovery technique wherein the HCI designers either participates in or

watches a person perform activities to learn about the interaction.

Before observation can be used in discovery, three minimum conditions set out by Tull and

reasonably short time span.

Through observation, it is possible to describe what goes on, who or what is involved, when

and where things happen, how they occur, and why things happen as they do in particular

situations (Jorgensen 1989). A great deal of time is spent on paying attention, watching and

listening carefully (Neuman 1994). The observer uses all the senses, noticing what is seen,

heard, smelled, tasted and touched (Neuman 1994; Spradley 1979).

According to Neuman (1994), there are four possible research stances for the participant

observer:

cipant: the researcher operates under conditions of secret observation and

full participation.

 -way mirror or in an invisible role that

ticipant as

observer: the researcher and members are aware of the research role, but the researcher is

an intimate friend who is a pseudo member.

who has more limited or formal contact with members.

Whitten et. al (2000) suggested the following points when observing in the requirements

discovery.

s or managers.

uals at work.

Interviews:

Interviews are a requirements discovery technique whereby the interaction designer

collects information from individuals through face-to-face interaction.

Unstructured and open-ended interviews are with only a general goal or subject in mind and

with few, if any, specific questions. The interviewer counts on the interviewee to provide a

framework and direct the conversation.

The goal is to elicit the respondent‘s views and experiences in his or her own terms, rather

than to collect data that are simply a choice among pre-established response categories

(Anderson et al. 1994). Secondly, the interview is not bound to a rigid interview format or

set of questions that would be difficult to establish given the nature of the research and will

limit the results (Anderson et al. 1994).

In structured and close-ended interviews the interviewer has a specific set of questions to

ask of the interviewee. Closed-ended questions restrict answers to either specific choices or

short, direct responses.

Whitten et. al (2000) suggested the following list of activities that could be used when

preparing interviews:

1. Select Interviewees

2. Prepare for the Interview with specific questions the interviewer will ask the interviewee.

3. Conduct the Interview

4. Follow Up on the Interview

Questions should not be leading or loaded. It is important to use consice and clear language

and avoid any bias as an interviewer. Keep the questions short and to the point and avoid

any intimidating questions.

Focus Groups:

Focus groups are a process whereby highly structured group meetings are conducted for the

purpose of analyzing problems and defining requirements. Focus groups are a subset of a

more comprehensive joint application development or JAD technique that encompasses the

entire systems development process.

Focus groups require a facilitator role. Facilitators encourage user and management

participation without allowing individuals to dominate the session. They make sure that

attendees abide by the established ground rules for the session, encourage group consensus

and keep the session on schedule.

Focus groups actively involve users in the interaction design and this improves their

acceptance and reduces the risk of resistance at the implementation stage. They reduce the

amount of time required to design interactions.

Brainstorming:

It is similar to focus group but more informal and use for generating ideas during group

meetings. Participants are encouraged to generate as many ideas as possible in a short

period of time without any analysis until all the ideas have been exhausted.

Questionnaires :

Questionnaires are special-purpose documents that allow the interaction designer to collect

information and opinions from respondents. Questionnaires can be in a free or fixed format.

Free-format questionnaires offer the respondent greater latitude in the answer. A question

is asked, and the respondent records the answer in the space provided after the question.

Fixed-format questionnaires contain questions that require selection of predefined

responses from individuals and are normally composed of multiple-choice, rating or ranking

questions.

Whitten et. al (2000) proposed the following activities when performing data collection with

the use of questionnaires.

 1. Determine what facts and opinions must be collected and from whom you should get

them.

2. Based on the needed facts and opinions, determine whether free- or fixed-format

questions will produce the best answers.

3. Write the questions.

4. Test the questions on a small sample of respondents.

5. Duplicate and distribute the questionnaire.

Data collected needs to be interpreted in order to identify the requirements for the design

of the HCI. The following tools will be covered for data interpretation:

1. Task analysis

2. Ishikawa diagram

3. Use cases

4. Story boarding

5. Primary stakeholder profiles

Task Analysis:

A task is as a set of activities that change the system from an initial state to a specified goal

or desired outcome state. The outcome may involve a significant change to the current

state, so we split tasks into a sequence of subtasks, each more simple than the parent task.

This process continues until the most primitive subtask is reached. This lowest level subtask

is variously referred to as an action, simple task, or unit task. Task descriptions are often

used to envision new systems or devices

Task analysis is used mainly to investigate an existing situation. It is used to determine

functionality by distinguishing the tasks and subtasks performed. Particular attention is paid

to frequent tasks, occasional tasks, exceptional tasks, and errors. Identifying goals and the

strategies (combinations of tasks) used to reach those goals is also part of a good task

analysis. By conducting a task analysis, the designer learns about the sequences of events

that a user may experience in reaching a goal (Diaper 1989).

Rees et al. (2001) propped a list of activities in order to conduct task analysis and are

described below:

1. Gathering information from observation of and/or consulting with users

2. Representing tasks in a task description notation

3. Performing an analysis of the task descriptions to achieve an optimum description

4. Using the task representation to produce a new user interface design or improve an

existing one.

The most popular technique used for this type of analysis is the Hierarchical Task Analysis

(HTA) tool. It involves breaking a task down into subtasks, then sub-sub-tasks and so on.

These are grouped as plans which specify how the tasks might be performed in practice. It

focuses on physical and observable actions and includes looking at actions not related to

software or an interaction device. Start with a user goal which is examined and the main

tasks for achieving it are identified.

In order to demonstrate the use of HTA, let‘s use an example of a task analysis for

borrowing a book from the library. The set of tasks and subtasks for borrowing the book

from the library is presented in figure 1.

1. Walk to the library

2. Search for the book

2.1 Access the library‘s catalogue computer system

2.2 Access the search book screen

2.3 Enter the in the search criteria the book title and author

2.4 Locate required book

2.5 Take note of the book‘s location

3. Walk to the book‘s location

4. Take the book and walk to the checkout counter

Ishikawa diagram:

The Ishikawa diagram is a graphical tool used to identify, explore, and depict problems and

the causes and effects of those problems. It is often referred to as a cause-and-effect

diagram or a fishbone diagram. This tool is used by designers in order to identify problems

with the interaction that could be tackled with the new design.

Use Cases:

One of the most popular and successful approaches for documenting business processes,

events and responses is a technique called use cases developed by Dr. Ivar Jacobson

(Jacobson et al. 1993). Use cases describe the business process, and document how the

business works and the business goals of each interaction with the system. These use cases

are then extended to show how the human interaction will support the business goals.

The interactions within the use case should be contained, initiated and seen through to

completion by an actor. The use case should further result in achieving a business goal and

leaving the system in a stable state (Reed 2002). The nature of a use case is to define the

"what" of a system.

An actor represents anything that needs to interact with the system to exchange

information. An actor is a user, a role, which could be an external system as well as a

person.

Benefits of use cases are highlighted by Witthen et. al (2000):

• Facilitates user involvement.

• A view of the desired human interaction‘s functionality from an external person‘s

viewpoint.

• An effective tool for validating requirements.

• An effective communication tool.

Storyboards:

Movies studios create storyboards that show the various scenes of a potential film,

particularly an animated film. A storyboard puts ideas on paper and then puts the papers in

a certain sequence to provide a concept of how the film will play out. It also gives the

production team an opportunity to look at the concept and make suggestions for improving

the film before it takes its final form.

In user interface design, there is a more interactive version of storyboarding called paper

prototyping. Paper prototyping involves creating a paper version of a software program,

hardware product, or Web site so you can learn how users interact with the design before

you develop the product. This paper prototype involves using a series of images that can be

animated, used to describe a work flow for a human computer interaction. They can

facilitate the process of task decomposition and the identification of interface requirements

since they help to visualize existing work flows.

Primary Stakeholder Profiles:

The HCI design includes four distinct stakeholder groups (Donoghue, 2002):

Users are the primary stakeholders since the use the design directly. Engineers and

designers are secondary stakeholders since they supply input or receive output for the

design. Managers are facilitators since they help to maintain the design. Sales and

marketing personal are indirect stakeholders since they are affected by the design but they

don‘t have direct contact with it. Users expect to have a successful experience with the user

interface (UI) the first time around. Because the users are the people who determine

whether something is useful, the characteristics of your users will go a long way toward

determining what is actually usable. However, users look for some general goals when they

use an interface (Donoghue, 2002):

quickly.

Defining a user‘s profile is an essential prerequisite for designing a HCI. The user profile will

influence the design and evaluation of an interface. Badre (2002) suggested the following

activities to generate a user profile:

1. Identify the relevant individual differences.

2. Identify and specialize the cognitive processing capabilities and limits.

3. Generate audience definition and categorization.

Individual differences can be grouped into four categories (Badre 2002):

1. Knowledge, experience, and skill: Individual users may differ in level and type of

education as well as in their knowledge, experience, and skill levels. There are several key

factors in this category that are determinants of a user's performance. These factors

describe the cognitive abilities and styles of projected users as well as their knowledge and

experience of the projected HCI‘s domain.

2. Personality factors: Affect the ease of user acceptance for interacting with and navigating

a HCI. Such attributes as tolerance level and motivation should indicate how much time

users will spend trying to use the new HCI to perform a transaction before giving up.

3. Physical and demographic attributes: Demographic attributes with implications for the

design of a HCI are age, gender, salary, and mobility. An audience definition statement

should take into account factors related to physical capabilities and limitations. Issues that

might affect design include the use of glasses (near-sightedness, bifocals), left- and right-

handedness, auditory devices, and other visual and motor aids.

4. User levels: The designer should take into consideration the users' varying levels of

expertise with the computing environment used for the HCI. Level can range from novice to

master level.

The usability effectiveness of designs depends in great part on their compatibility with the

user's information-processing capabilities and limitations. Designers must take into account

the users' cognitive and perceptual limits and how people are likely to process information

in an interactive environment. There are some basic universal human information-

processing characteristics, which affect the way people store, remember, and manipulate

information, which in turn have implications for HCI design. For example, if the user has

selective attention, this means both creating designs that draw user attention to a particular

screen location and optimizing the ease of locating displayed information such as using a

unique bright color to draw attention to a displayed link can increase the chances that it will

be noticed before other links.

Generating an audience profile means generating a document that specifies the relevant

characteristics, the range and frequency values of the identified characteristics, and how

this specified information might impact design decisions.

User profiles can be also seen from the marketing point of view. Eisenberg and Eisenberg

(2006) discussed the creation of primary stakeholder profiles in terms of marketing, which

essentially means to persuade the user that the interface is worth using. Profiles connect

three different dimensions of information:

data shows such data as the user's gender, location, and income.

some of the persona needs and determines questions that

each persona may ask. For example, a spontaneous type and a competitive type will ask

different questions and will want different types of information.

ining how complex the persuasion

process is; that complexity is based on a customer's perceptions and experiences.

Regarding the topology dimension, Eisenberg and Eisenberg mapped a four-dimension

model for the process of persuasion in sales:

s is the urgency that a user feels for a product or service.

career or self-esteem.

can affect

need and risk. For example, if someone feels he doesn't have enough information about a

product or service, the risk factor for that user is higher.

need to be convinced and when.

Marketing analysis and existing competition:

Marketing plays an important role when defining HCI requirements. Designers need to take

into consideration competition and existing technologies when defining requirements in

order to build competitive interactions. Users are driving the marketing and acceptance of

user interfaces therefore it is important to make every effort to find out market

demographics. A marketing analysis for defining requirements of the HCI can be done by

using the techniques suggested by Cooper and Reimann (2003):

papers.

d. That research can

include analyzing demographic, geographic, or behavioral variables to see if any patterns

emerge.

Documenting HCI requirements:

Requirements need to be documented after they are discovered by the HCI designer. A

requirements definition document should consist of the following according to Whitten et

al. (2000):

1. The functions and services the system should provide.

2. Nonfunctional requirements including the system‘s features, characteristics, and

attributes.

3. The constraints that restrict the development of the system or under which the system

must operate.

4. Information about other systems the system must interface with.

Heim (2007) proposes that the formal discovery documentation should include:

1. Mission Statement

2. Requirements Document

3. Project Management Document

4. Usability Guidelines.

Design:

Conceptual Design:

After the requirements discovery phase is completed, the design phase uses the

requirements in order to create conceptual and physical designs.

Conceptual design is the creation of alternative design ideas. At this stage, a description of

the proposed system is presented in terms of a set of integrated ideas and concepts about

what it should do, behave and look like.

The conceptual design follows requirements analysis but precedes the physical design. It

helps to determine functions, operations and features and the workflow of the interface. It

also allows the designer to identify inputs and outputs and the style of the interaction.

Several tools for conceptual design will be introduced here including brainstorming, card

sort, personas, scenarios, semantic networks and cognitive walkthroughs.

Brainstorming:

These are sessions with your project team that will help to uncover ideas that your team can

implement now or sometime later. Brainstorming sessions should be centered on a topic.

For example, a brainstorming session can center on what user interface elements will meet

specific goals. (Cooper & Reimann 2003)

Participants are encouraged to generate as many ideas as possible in a short period of time

without any analysis until all the ideas have been exhausted.

Card sort:

Card sorting is normally performed with the use of small paper cards that are usually lined.

Each card represents one screen and these cards can be shown easily on a table or the wall

in order to represent multiple screens. Thread or lines within the cards indicate sequences

or hyperlinks. They are used often in web design but can also be used in any design that

involves multiple screens.

Card sorting is an excellent way to explore work flow without having to create a detailed

screen design. However, they have limitations since it is hard to explore elements that are

not included in the cards such as icons or other interface elements.

Scenarios:

Scenarios can be used to express proposed or imagined situations that describe the

different tasks a person would need to do in order to accomplish a specific goal with the

design. They are used throughout the design process as scripts for user evaluation of

prototypes and for co-operation among designers involved in an interaction project.

In creating such scenarios, a designer specifies interface objects and actions for given

contexts from the perspective of the user (Badre 203).

To create successful scenarios, Badre (2002) suggested to answer the following questions.

1. Where and under what conditions will the system be used?

2. For what purpose will the system be used?

3. Who will use the system (the target audience)?

4. How will the system be used?

Scenarios provide a fast and effective way to imagine the design concepts in use. They are

simple stories about what it would be like to use the interface once it has been made and

the protagonists of these stories are the personas (Saffer 2006).

Semantic Networks:

Semantic networks are an excellent way to represent concepts associations in interaction

design. Rees et. al (2001) mentioned that the human thought is basically nonlinear and that

the human learning and perceptual process is essentially organized as a semantic network in

which concepts are linked together by associations. In few words, human learn and

remember through nonlinear associations. The fundamental components of a semantic

network are:

epts

In a semantic network a node is defined as a single concept or idea. Nodes can be virtually

any kind of information such as text, graphics, animation, audio, video, images, programs,

and so on. Nodes can be "typed," indicating how they are used. For example, if a node in a

Web-based hypertext system is designated as the "home page," there is the implication that

that node will be used in a specific way to traverse that system (i.e., it is the node where

readers will begin).

Nodes are connected to other nodes with links. The role of a link is to connect related

concepts or nodes. Links are bidirectional, meaning that a reader can go backwards and

forwards.

Like nodes, links can also be "typed," illustrating features of the relationship of the nodes

they connect. For example, a link might reflect some relationship between nodes such as

parent–child. (Rees et. al 2001).

Cognitive walkthrough:

Cognitive walkthrough is a technique that involves a group of users that evaluates a human

interaction by going through a set of tasks. The user interface is presented as a paper

prototype to the evaluators and they follow the various scenarios of the interaction. The

input to the walkthrough includes the user profile, especially the users' knowledge of the

task domain and of the interface, and the task cases. The evaluators may include human

factors engineers, software developers, or people from marketing, documentation, etc. .

Zhang (2008) identifies the following questions required to design the walkthrough:

Dix et. al (1998) mention that for each task in the walkthrough the evaluator should

consider:

to generate the correct goals?

Personas:

Personas are profiles of the users that interact with a HCI These profiles describe user

characteristics such as user expertise, user motivation, user job functions and the impact of

the interaction in the user‘s job. They help the designer to understand who will be using the

interaction in order meet user expectations.

Personas can be created by observing and talking to users. Personas don‘t have to be for a

specific individual but for a set of people that share the same goals. Personas should identify

each persona's desires and the expectations, behaviours, attitudes, biases, and other factors

that affect them.

A set questions that could be helpful to create a persona are identified by Hackos and

Redish (1998) as follows:

e your work? Why or why not?

this product every day to get your job done?

esigning for?

do you think of the documentation of the current system?

Personas might use construct context scenarios that describe personas and their activities in

a typical day using the new and improved system, which includes the new user interface.

The scenarios don't discuss the form and function, but only the behaviours of the user and

the interface (Buttow 2007).

Interaction design models:

Interaction design models are useful for analyzing and understanding interface design. They

are used to test designs that might be hard to test with real users and prototypes. They can

also be used to document designs. Interaction design models can be predictive or

descriptive. Predictive models can be used to simulate user actions in order to test a design.

Descriptive models are mainly use to document designs and to visualize its logic and

behaviour.

GOMS:

The model of goals, operators, methods, and selection rules (GOMS) (Card, Moran, and

Newell 1983) allows to predict how long an experienced worker will take to perform a

particular operation when using a given interface design.

The significance of these model components is:

ne a set of

possible methods.

necessary to change any aspect of the user's memory or to affect the task environment.

 goal, cast as a continual

sequence of sub goals and operators, with conditional tests on the user's immediate

memory and on the task state.

used to accomplish the goal.

The GOMS models describes the interaction as a sequence of small, discrete subtasks or unit

tasks.

Keystroke-Level Model:

The Keystroke-Level Model is a simplified version of GOMS and was proposed by Card,

Moran & Newell (1980) as a method for predicting user performance. The model is based on

the concept that the time that it takes the user-computer system to perform a task is the

sum of the times it takes for the system to perform the serial elementary gestures that the

task comprises. Although different users might have widely varying times, the researchers

found that for many comparative analyses of tasks involving use of a keyboard and a

graphical input device, it is possible to use a set of typical times rather than measuring the

times of individuals. By means of careful laboratory experiments, Card, Moran and Newell

(1983) developed a set of timings for different operations. The model includes six

operations including keystroking, pointing, homing, mental preparation and response.

